Si è ritenuto che nell’ambito dell’offerta delle LM fosse caratteristica necessaria la coerenza dei contenuti e la loro contestualizzazione didattica con l’obiettivo formativo della laurea in oggetto.
Il corso intende fornire gli strumenti necessari per la progettazione, l’elaborazione e l’analisi dei dati in campo economico. La parte teorica sarà affiancata da una parte applicata su dati reali e case studies provenienti dall’economia del lavoro, relazioni industriali e sistemi di welfare e dall’economia dell’ambiente e dello sviluppo con l’uso di opportuni software statistici (quali ad es. R, Minitab, Hugin).
Pertanto allo studente verrà insegnato non solo ad applicare tecniche statistiche ma anche a scegliere la tecnica più opportuna ed a commentare l’output ai fini decisionali. Agli studenti verrà insegnato non solo l’aspetto teorico dei modelli ma anche i principali contesti applicativi e il loro utilizzo mediante opportuni software statistici.
Il corso insegna a gestire un’indagine statistica dalla sua pianificazione all’analisi e commento dei dati.
Il corso intende fornire gli strumenti necessari per la progettazione, l’elaborazione e l’analisi dei dati in campo economico. La parte teorica sarà affiancata da una parte applicata su dati reali e case studies provenienti dall’economia del lavoro, relazioni industriali e sistemi di welfare e dall’economia dell’ambiente e dello sviluppo con l’uso di opportuni software statistici (quali ad es. R, Minitab, Hugin).
Pertanto allo studente verrà insegnato non solo ad applicare tecniche statistiche ma anche a scegliere la tecnica più opportuna ed a commentare l’output ai fini decisionali. Agli studenti verrà insegnato non solo l’aspetto teorico dei modelli ma anche i principali contesti applicativi e il loro utilizzo mediante opportuni software statistici.
Il corso insegna a gestire un’indagine statistica dalla sua pianificazione all’analisi e commento dei dati.
Curriculum
scheda docente
materiale didattico
Uso software: R, Minitab, Hugin
Elaborazione di progetti su dati pertinenti al proprio percorso
Argomenti:
-Introduzione ai principali tecniche di campionamento;
-Modello lineare semplice e multiplo;
-Modelli lineari generalizzati (con particolare attenzione ai modelli logistici e log-lineari);
Analisi della varianza (ANOVA);
-Tabelle di indipendenza
-Metodi statistici di supporto alle decisioni in condizioni di incertezza. Albero delle decisioni. Reti bayesiane e reti per le decisioni. Applicazione a casi reali.
-Principali metodi di statistica multivariata esplorativa quali l'analisi fattoriale, cluster analisi.
-Cenni alle Serie Storiche
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi.
Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici.
Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio.
Altro materiale didattico sarà disponibile sulle pagine del corso nel sito web della Scuola:
https://host.uniroma3.it/facolta/economia/economia.asp?contenuto=insdocs&insid=673
e su piattaforma Moodle trovate le indicazioni per collegarvi a OneDrive dove trovate tutte le lezioni video, le esercitazioni e le istruzioni per Minitab e Hugin.
Agresti A, Finlay B. (2007) Statistical Methods for the Social Sciences, Pearson College Div; 4th edition
T. W. Anderson (2003) An Introduction to Multivariate Statistical Analysis, 3rd Edition. ISBN: 978-0-471-36091-9
Altri testi di riferimento
Jensen, F. B., Graven-Nielsen, T. (2007) Bayesian Networks and Decision Graphs, 2nd ed., Springer Verlag.
Mutuazione: 21201712 STATISTICA APPLICATA in Mercato del lavoro, relazioni industriali e sistemi di welfare LM-56 MORTERA JULIA
Programma
Punti di forza del corso:Uso software: R, Minitab, Hugin
Elaborazione di progetti su dati pertinenti al proprio percorso
Argomenti:
-Introduzione ai principali tecniche di campionamento;
-Modello lineare semplice e multiplo;
-Modelli lineari generalizzati (con particolare attenzione ai modelli logistici e log-lineari);
Analisi della varianza (ANOVA);
-Tabelle di indipendenza
-Metodi statistici di supporto alle decisioni in condizioni di incertezza. Albero delle decisioni. Reti bayesiane e reti per le decisioni. Applicazione a casi reali.
-Principali metodi di statistica multivariata esplorativa quali l'analisi fattoriale, cluster analisi.
-Cenni alle Serie Storiche
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi.
Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici.
Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio.
Testi Adottati
Agresti A, Finlay B. (2012) Metodi Statistici di base e avanzati per le scienze sociali, Pearson.Altro materiale didattico sarà disponibile sulle pagine del corso nel sito web della Scuola:
https://host.uniroma3.it/facolta/economia/economia.asp?contenuto=insdocs&insid=673
e su piattaforma Moodle trovate le indicazioni per collegarvi a OneDrive dove trovate tutte le lezioni video, le esercitazioni e le istruzioni per Minitab e Hugin.
Agresti A, Finlay B. (2007) Statistical Methods for the Social Sciences, Pearson College Div; 4th edition
T. W. Anderson (2003) An Introduction to Multivariate Statistical Analysis, 3rd Edition. ISBN: 978-0-471-36091-9
Altri testi di riferimento
Jensen, F. B., Graven-Nielsen, T. (2007) Bayesian Networks and Decision Graphs, 2nd ed., Springer Verlag.
Modalità Erogazione
Lezioni frontali per 30 ore e Lezioni in Aula Informatica per 30 ore. A partire dal 1 marzo.Modalità Frequenza
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi. Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici. Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio. Ricevimento: per gli orari di ricevimento consultate sempre la pagina web del docente che viene aggiornata relativamente agli orari e a loro modifiche e/o spostamenti: http://host.uniroma3.it/facolta/economia/economia.asp?contenuto=docenti&id=49Modalità Valutazione
Valutazione • Per gli studenti frequentanti la valutazione si basa su una prova scritta e sulla elaborazione, presentazione e discussione di un progetto su dataset pertinenti al proprio percorso di studio. • Per gli studenti non frequentanti la valutazione si basa su una prova scritta ed un esame orale su tutto il programma.
scheda docente
materiale didattico
Uso software: R, Minitab, Hugin
Elaborazione di progetti su dati pertinenti al proprio percorso
Argomenti:
-Introduzione ai principali tecniche di campionamento;
-Modello lineare semplice e multiplo;
-Modelli lineari generalizzati (con particolare attenzione ai modelli logistici e log-lineari);
Analisi della varianza (ANOVA);
-Tabelle di indipendenza
-Metodi statistici di supporto alle decisioni in condizioni di incertezza. Albero delle decisioni. Reti bayesiane e reti per le decisioni. Applicazione a casi reali.
-Principali metodi di statistica multivariata esplorativa quali l'analisi fattoriale, cluster analisi.
-Cenni alle Serie Storiche
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi.
Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici.
Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio.
Altro materiale didattico sarà disponibile sulle pagine del corso nel sito web della Scuola:
https://host.uniroma3.it/facolta/economia/economia.asp?contenuto=insdocs&insid=673
e su piattaforma Moodle trovate le indicazioni per collegarvi a OneDrive dove trovate tutte le lezioni video, le esercitazioni e le istruzioni per Minitab e Hugin.
Agresti A, Finlay B. (2007) Statistical Methods for the Social Sciences, Pearson College Div; 4th edition
T. W. Anderson (2003) An Introduction to Multivariate Statistical Analysis, 3rd Edition. ISBN: 978-0-471-36091-9
Altri testi di riferimento
Jensen, F. B., Graven-Nielsen, T. (2007) Bayesian Networks and Decision Graphs, 2nd ed., Springer Verlag.
Mutuazione: 21201712 STATISTICA APPLICATA in Mercato del lavoro, relazioni industriali e sistemi di welfare LM-56 MORTERA JULIA
Programma
Punti di forza del corso:Uso software: R, Minitab, Hugin
Elaborazione di progetti su dati pertinenti al proprio percorso
Argomenti:
-Introduzione ai principali tecniche di campionamento;
-Modello lineare semplice e multiplo;
-Modelli lineari generalizzati (con particolare attenzione ai modelli logistici e log-lineari);
Analisi della varianza (ANOVA);
-Tabelle di indipendenza
-Metodi statistici di supporto alle decisioni in condizioni di incertezza. Albero delle decisioni. Reti bayesiane e reti per le decisioni. Applicazione a casi reali.
-Principali metodi di statistica multivariata esplorativa quali l'analisi fattoriale, cluster analisi.
-Cenni alle Serie Storiche
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi.
Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici.
Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio.
Testi Adottati
Agresti A, Finlay B. (2012) Metodi Statistici di base e avanzati per le scienze sociali, Pearson.Altro materiale didattico sarà disponibile sulle pagine del corso nel sito web della Scuola:
https://host.uniroma3.it/facolta/economia/economia.asp?contenuto=insdocs&insid=673
e su piattaforma Moodle trovate le indicazioni per collegarvi a OneDrive dove trovate tutte le lezioni video, le esercitazioni e le istruzioni per Minitab e Hugin.
Agresti A, Finlay B. (2007) Statistical Methods for the Social Sciences, Pearson College Div; 4th edition
T. W. Anderson (2003) An Introduction to Multivariate Statistical Analysis, 3rd Edition. ISBN: 978-0-471-36091-9
Altri testi di riferimento
Jensen, F. B., Graven-Nielsen, T. (2007) Bayesian Networks and Decision Graphs, 2nd ed., Springer Verlag.
Modalità Erogazione
Lezioni frontali per 30 ore e Lezioni in Aula Informatica per 30 ore. A partire dal 1 marzo.Modalità Frequenza
Per ciascuna metodologia statistica sarà illustrata una specifica applicazione nell’ambito dell’analisi economico. Gli esempi numerici saranno svolti sulla base di alcuni data set sui quali gli studenti potranno esercitarsi. Il corso è prevalentemente di carattere applicativo, indirizzato a chi desideri comprendere le potenzialità delle singole metodologie e gli strumenti tecnici per utilizzarle. Saranno fornite indicazioni per approfondimenti teorici specifici. Agli studenti interessati sarà offerta la possibilità di fare pratica delle tecniche descritte a lezione attraverso lo svolgimento di un progetto su dataset pertinenti al proprio percorso di studio. Ricevimento: per gli orari di ricevimento consultate sempre la pagina web del docente che viene aggiornata relativamente agli orari e a loro modifiche e/o spostamenti: http://host.uniroma3.it/facolta/economia/economia.asp?contenuto=docenti&id=49Modalità Valutazione
Valutazione • Per gli studenti frequentanti la valutazione si basa su una prova scritta e sulla elaborazione, presentazione e discussione di un progetto su dataset pertinenti al proprio percorso di studio. • Per gli studenti non frequentanti la valutazione si basa su una prova scritta ed un esame orale su tutto il programma.